
1
Cameron Main 200425522

Exploring the Effectiveness of Dialogue Interaction
Methods with Non-Player Characters in Video Games

Cameron Main (200425522)

BSc Computer Science, May 2023
Supervisor: Dr. Giacomo Bergami

Word Count: 13,624

2
Cameron Main 200425522

Abstract
This dissertation studies the effectiveness of different dialogue interaction methods with Non-
Player Characters within video games. This is tackled through the development of a small video
game within the Unity game engine that incorporates conventional methods of NPC dialogue
interaction, as well as newer experimental means of interaction. The experimental methods rely
on Natural Language Processing techniques and Large Language Models. The effectiveness of
each method is evaluated in both the context of implementation feasibility and how players of
the game perceive each method.

Declaration

“I declare that this dissertation represents my own work except where otherwise stated.”

3
Cameron Main 200425522

Contents
Abstract .. 2

Declaration ... 2

Table of Figures ... 5

Introduction .. 6

Context ... 6

Purpose .. 6

Project Aim ... 7

Project Objectives .. 8

Objective 1 .. 8

Objective 2 .. 8

Objective 3 .. 8

Objective 4 .. 8

Objective 5 .. 9

Objective 6 .. 9

Research .. 9

Background Reading .. 9

Foundation Models ... 9

Natural Language Processing ..10

Open & Closed Domain Systems ...11

Interviews & Correspondence ..12

Design & Implementation...14

Introduction ..14

Planning/ Methodology...14

Tools & Technologies ..15

Unity Game Engine ..15

Visual Studio ..15

PyCharm ..15

Python.NET ...15

SpaCy ..16

ChatGPT ..16

Application Specific Requirements ..16

Requirement 1 – Player Controller ...17

4
Cameron Main 200425522

Requirement 2 – Story/ Objectives ...17

Requirement 3 – Game World ..17

Requirement 4 – Conventional NPC Interaction ...17

Requirement 5 – Closed Domain NPC Interaction ...17

Requirement 6 – Open Domain NPC Interaction ..17

Development ...17

Requirement 1 ...17

Requirement 2 ...18

Requirement 3 ...18

Requirement 4 ...19

Requirement 5 ...25

Requirement 6 ...33

Evaluation ...39

Overview ...39

Evaluation of Implementation ..39

Dialogue Interaction Method 1 - Branching Dialogue ...39

Dialogue Interaction Method 2 - NLP Tools & Techniques ...40

Dialogue Interaction Method 3 – LLM Interaction ...42

Evaluation of Player Perception ...43

Conclusion ..45

Fulfilment of Project Aim & Objectives ...45

What Went Well ...46

What Could Be Improved...46

Future Work...46

References ...47

5
Cameron Main 200425522

Table of Figures
Figure 1 In-game image of Starfield's dialogue interaction UI [3] Credit: IGN 7
Figure 2 Example of ChatGPT explaining how itself works..10
Figure 3 Key findings from Inworld's report. Credit: Inworld AI ..12
Figure 4 Screenshot from Unity editor illustrating the game's castle setting.19
Figure 5 In-game capture of Skyrim's dialogue interaction UI. Credit: Moby Games20
Figure 6 Example of a directed graph within the context of the game.21
Figure 7 Code snippet: Creating a dialogue object. ...22
Figure 8 Code snippet: Chaining dialogue. ..23
Figure 9 How the dialogue objects are linked via the Unity Editor UI. ..24
Figure 10 In-game screenshot of the branching dialogue system. ...25
Figure 11 A knowledge graph structure. Credit: Wikipedia ..26
Figure 12 Code snippet: Importing required libraries and models. ...27
Figure 13 Code snippet: Creating the matcher object..27
Figure 14 Code snippet: Creating knowledge graph using matcher function.28
Figure 15 Code snippet: Populating entities dictionary. ...28
Figure 16 Code snippet: Linking entities..29
Figure 17 Code snippet: Providing clues ...29
Figure 18 Code snippet: Response options dictionary ...30
Figure 19 Code snippet: Performing sentiment analysis ..30
Figure 20 Code snippet: How responses are chosen ..31
Figure 21 Code snippet: Initialising the Python script within Unity ...31
Figure 22 In-game image of player interacting with NPC using NLP methods32
Figure 23 Two-Stage Approach for Language Modelling Credit: C. Gomes [31]........................34
Figure 24 Code snippet: Part of the ChatGPT wrapper ...35
Figure 25 Example test conversation between the player and LLM AI through OpenAI's web
interface ..37

6
Cameron Main 200425522

Introduction

Context
In recent years, the gaming industry has experienced unparalleled growth, with an escalating
demand for more immersive and realistic gaming experiences, projected to reach a staggering
$321 billion by 2026 [1]. Non-Player Characters (NPCs) are a crucial component of video
games and play a significant role in the overall gameplay experience. NPCs serve as key
elements for advancing the narrative, providing challenges for players, and offering important
information to guide their actions. Their interactions with players are critical to the success of a
game, shaping their perceptions of the game world and overall enjoyment.

Traditional NPC interaction methods that have been popularised and used over the past few
decades are often scripted, limited, and repetitive, resulting in a lack of engagement and
immersion among players. A substantial 52% of gamers say that they dislike repetitive NPC
dialogues [2]. Furthermore, traditional NPC interactions often lack depth and fail to respond
meaningfully to a player's actions, resulting in a limited sense of player agency and a feeling of
detachment from the game world. Ultimately, this led to decreased engagement and enjoyment.
Although there have been some attempts to improve NPC interactions, such as the use of
branching dialogue trees, these methods are still limited by predefined scripts and lack the
ability to adapt to the player's actions and dialogue in real time.

Purpose
The purpose of this project was to explore how Machine Learning (ML) and Natural Language
Processing (NLP) techniques can produce AI-generated responses at runtime from player
inputs that facilitate more realistic and immersive NPC interactions in a video game.

The benefits of creating such a system are twofold. First, it benefits players by addressing the
previously outlined problem of the current state of NPCs, namely, bland, repetitive, and
nonreactive. In addition to benefiting developers, utilising AI-generated dialogue responses
would remove the monetary and time costs associated with hiring script writers who must write
out each line of dialogue manually and then assign a developer to the relevant character and
situation.

Large games studios such as Bethesda Softworks, who pride themselves in having substantial
dialogue systems with rich and varied dialogue in their role-playing games, could potentially
benefit from utilising AI to generate dialogue dynamically to save the costly expenses of the
traditional method of script writing.

As games become more advanced and gamers demand more from developers, both graphically
and story-wise, the development time for games is also increasing. Simply put, the bar is raised
with each game iteration, thus requiring more time to produce something that will top the

7
Cameron Main 200425522

previous and exceed consumer expectations.

Figure 1 In-game image of Starfield's dialogue interaction UI [3] Credit: IGN

Bethesda is a prime example of this; their 2011 release The Elder Scrolls V: Skyrim contained
around 60,000 lines of dialogue [3]. Their next release was in 2015 with Fallout 4, in which the
dialogue increased to approximately 111,000 lines. Now, their upcoming release in 2023,
Starfield, boasts an astounding 252,953 lines of dialogue and counting as development
continues. Utilising a method to bypass the requirement of writing and incorporating these lines
could greatly increase game development productivity, reduce costs, and please gamers with
fulfilling and interactive experiences.

Project Aim
The primary aim of this project is to create a prototype game that employs NPCs capable of
interacting with players in a procedural, reactive, and coherent manner, thereby helping players
complete the level or quest objectives. In addition, the game features NPCs using the traditional
preconfigured dialogue found in most video games.

To evaluate the effectiveness of the novel ML/NLP-based NPC interactions compared to the
standard pre-configured dialogue, a group of participants, including gamers and non-gamers,
will play the game and provide feedback on their overall gameplay experience. Feedback mainly
focuses on NPC interactions. This feedback will be analysed to determine the viability of
implementing this new approach in future video games. It has the potential to provide more

8
Cameron Main 200425522

immersive and engaging experiences for players and streamline development time compared
with conventional methods.

By the end of this project, I hope to demonstrate whether this new approach to NPC interaction
is effective and efficient, potentially offering new directions for future game development.

Project Objectives

Objective 1
Research and incorporate conventional NPC dialogue interaction methods. The most
common methods will be identified, of which the most appropriate will be chosen to be
implemented into the Unity project.

Objective 2
Conduct User Research to Gather Feedback on NPC Interactions in Video Games. Liaising
with gamers of varying experience levels to gather qualitative data on their opinions on NPC
interactions in video games will allow me to gain insight into their frustrations, preferences, and
expectations, which will inform the development of a more user-friendly and engaging system.
Successful data collection provides user requirements that must be met when building the
system.

Objective 3
Research and understanding of how open and closed domain dialogue generation
systems work. The available literature on open and closed-domain dialogue generation
systems will be examined. These systems are often utilised in natural language processing
(NLP) and can be designed to generate conversational responses for NPCs in video games.
Research on Large Language Models (LLMs) is also required. This analysis will provide me with
the fundamental understanding necessary to develop LLM/NLP-based NPC interactions in
Unity.

Objective 4
Implementation and testing of LLM and NLP-based NPC interactions in the Unity Project.
The knowledge gained from Objective 3 of LLM/NLP-based NPC interactions can be integrated
into a Unity project. Testing will then be conducted to ensure that the interactions work as
intended and identify any potential issues.

9
Cameron Main 200425522

Objective 5
Conduct user playtesting and gain feedback on the implementation. Qualitative data will be
collected from participants who play the game to gain a deeper understanding of their gameplay
experiences, particularly their interactions with the NPCs.

Objective 6
Evaluation of the viability of implementing each NPC interaction method in video games.
The potential of implementing this approach in future video games will be evaluated. Factors
such as the level of engagement provided to the players, resources required for implementation,
and the technical feasibility of the approach will be considered. This evaluation will help
determine whether LLM/NLP-based NPC interactions can be used to provide more engaging
and immersive experiences for players at any cost.

Research
This chapter addresses how the research was conducted for this dissertation. It will include the
background material utilised to gain an understanding of the topic, as well as how research was
conducted through a series of interviews with gamers.

Background Reading
To undertake this project, it was necessary to move beyond the conventional rule-based
approach of creating game AI, such as state machines, which generate predetermined
responses to stimuli. Initial background research indicated that foundational models enable
greater flexibility and adaptability in NPC behaviour.

Foundation Models
Foundation models present a new approach to artificial intelligence with the goal of building
general and adaptable models that can be used across various tasks and fields with minimal
modification. IBM defines foundation models as models trained on a large and diverse set of
unlabelled data using self-supervised learning techniques that leverage the structure and
patterns in the data to generate labels or objectives for the model to learn from [4].

Looking a little deeper, R. Bommasani et al. (2021) states a foundation model as being any
model that is trained on broad data at scale and can be adapted to a wide range of downstream
tasks [5]. The authors use the term “foundation model” to underscore the critically central yet
incomplete character of these models. Foundation models are based on standard deep learning
and transfer learning techniques; however, their scale results in new emergent capabilities.
Their effectiveness across many tasks incentivises homogenisation, but this also means that the
defects of the foundation model are inherited by all the adapted models downstream.

10
Cameron Main 200425522

Self-supervised learning enables the model to learn transferable representations of data without
requiring human annotation or domain-specific knowledge. These representations can be fine-
tuned for specific tasks with minimal additional data or computation, reducing the cost and time
required to develop and deploy new AI systems as well as the environmental impact of training
large-scale models.

Several impressive examples of foundation models, such as GPT-3, BERT, DALL-E 2, and
Codex, have shown promising results in NLP and computer vision.

However, there are also significant costs, challenges, and risks associated with the foundation
models. These include ensuring the quality, diversity, and fairness of the data used to train the
models; understanding the limitations and biases of the models and their outputs; ensuring their
security and robustness against adversarial attacks or misuse; and developing ethical and legal
frameworks for regulating their use and impact on society.

Moreover, the biggest cost associated with foundation models is the significant computational
resources required, and as such, large comprehensive models are reserved for billion-dollar
industry leaders in cloud computing, such as Microsoft and Google. Self-proclaimed “world
leaders in artificial intelligence computing”, Nvidia, claim that training a model has an estimated
cost of $1bn [6].

Understanding this plays a pivotal role in determining the scope of a project. Gaining a
background comprehension of what goes into creating a foundation model and how they can be
utilised for an array of general purposes underpins this project as a whole, and sets
expectations of what can and cannot be achieved with the given limitations of budget, time, and
resources.

Natural Language Processing
Natural Language Processing (NLP) has been mentioned numerous times, and explaining it and
how it will play into the project is a necessary step.

Figure 2 Example of ChatGPT explaining how itself works.

11
Cameron Main 200425522

NLP is a subfield of computer science that aims to impart computational systems with the ability
to comprehend and formulate texts and speech in a manner that mimics human language. The
scope of NLP is broad, encompassing applications such as machine translation, data extraction,
text emotion analysis, text summarisation, query answering, and dialogue systems [7].
Achieving proficiency in NLP depends on various methods and techniques, including those from
the domains of artificial intelligence, linguistics, statistics, and machine learning.

It is NLP, which will be the driving force of this project, as building a game with a reactive
dialogue system will depend heavily on these practices to produce a game AI that can interpret
the player’s text input and output an appropriate response.

Open & Closed Domain Systems
A significant challenge in NLP is building systems that can understand and model the context of
a conversation. Conversational systems aim to achieve this goal by extracting the relevant
information from conversational data and representing it in a structured manner. Such systems
can be classified into two types: open domain and closed domain.

Open domain systems are designed to handle conversations that span a wide range of topics
and scenarios, such as general chatbots, social media analysis, and question-answering
systems. Additionally, open domain systems do not assume any prior knowledge of the domain
or the participants of the conversation, and they rely on large-scale data sources and general-
purpose NLP models to infer the meaning and intent of the utterances. Thus, while making them
more flexible and adaptable, they also face challenges in terms of ambiguity, noise, and
complexity of conversational data [8].

Conversely, closed-domain systems are designed to handle conversations that are limited to a
specific topic or scenario, such as customer service, booking, or medical diagnosis. These
systems assume some prior knowledge about the domain and the participants of the
conversation, and rely on domain-specific data sources and NLP models to extract relevant
information from the utterances. As a result, more specialised closed domain systems are more
accurate and efficient but struggle to compete with open domain systems in terms of scalability,
portability, and generalisation to new domains or scenarios [8].

Reviewing this background material illustrates how numerous sub-categories exist under the
umbrella of foundation systems. Building a game with open-domain AI would certainly produce
results that differ from those of a closed domain. Exploring these differences is what this project
aims to do and, more importantly, how players perceive NPCs equipped with different AI
systems.

12
Cameron Main 200425522

Interviews & Correspondence
A recent report from Inworld AI, which offers a fully integrated platform for AI characters that
goes beyond large language models (LLMs) [9], entitled “The Future of NPCs: What Gamers
demand From Next-Gen Characters” relates closely to the issue at hand. Inworld queried 1000
gamers of varying ages, playtimes, and gaming platforms and found a strong consensus that
players desire more from NPCs. Players understand the importance of NPCs, but are growing
tired of the lack of innovation in this area of video games, compared to other aspects such as
graphics which have advanced immensely [2].

However, these findings fall within Inworld’s self-interest. Therefore, conducting first-hand
interviews with gamers could verify these findings and offer a deeper insight into what exactly
frustrates gamers and where they would like to see the future of NPCs heading.

A series of ten one-on-one verbal interviews were conducted online with gamers through the
online social messaging platform Discord [10]. The interviews began with general ice breaker
questions to gauge the participants’ understanding and experience within games and then
moved onto queries that were more project-specific regarding NPCs.

The following is the general script for the interviews. Interviewees were encouraged to elaborate
as much as possible, with the supplementary questions only being used to guide them if they
were stuck for an answer.

1. How often do you play video games that feature NPCs?
2. What are some of the video games you have played or are currently playing with NPCs?
3. Has an NPCs behaviour surprised or impressed you in a video game? If so, what was it and why?

Figure 3 Key findings from Inworld's report. Credit: Inworld AI

13
Cameron Main 200425522

4. How do you interact with NPCs in video games? Do you talk to them, follow them, fight them,
ignore them, etc.?

5. What are some of the benefits and drawbacks of having NPCs in video games?
6. How do you feel about the NPCs' appearance, behaviour, dialogue, and personality? Do they

need to look realistic, act naturally, speak convincingly, or have distinct traits?
7. How do NPCs affect your immersion, enjoyment, and engagement in video games? Do they

make you feel more connected, interested, and involved in the game world and story?
8. How do NPCs influence your decision-making, problem-solving, and strategy in video games? Do

they help you, hinder you, challenge you, or guide you in the game?
9. How do you perceive the relationship between yourself and the NPCs in video games? Do you

see them as friends, enemies, allies, rivals, mentors, etc.?
10. How do you evaluate the quality and intelligence of the NPCs in video games? Do they behave

consistently, adaptively, creatively, or realistically?
11. What are some of the features or improvements that you would like to see in future NPCs in video

games? How would they enhance your gaming experience?

Some common themes emerged from the ten participants. Most participants played video
games with NPCs semi-regularly, and they found them to be integral parts of the game world.
Many players interact with NPCs in various ways, from talking to fighting them to ignoring them.
Players found NPCs to be important for immersion and engagement in the game world as they
help create a more believable and dynamic environment.

Unsurprisingly, players had diverse opinions about NPC appearance, behaviour, and
personality. Some players preferred NPCs to look realistic, whereas others preferred more
stylised designs. However, the consensus that NPCs should act naturally and speak
convincingly was reached.

Regarding the impact of NPCs on decision making and strategy, players generally found them
helpful, although some NPCs could hinder or challenge them. The players expressed frustration
at the locomotion of NPCs, complaining about their lack of special awareness and rigid
movement. However, this is a problem that is beyond the scope and relevance of this project.
Most players perceived their relationship with NPCs as neutral, although some articulated their
enjoyment from intentionally hindering NPCs depending on the game and story.

Finally, when asked about future NPCs' features and improvements, the players had varying
responses. Some wanted to see more adaptive and creative NPCs that behaved more
realistically, while others were interested in more diverse and complex character development.

Overall, the findings align very much with those of Inworld and suggest that NPCs are important
elements of video games that contribute significantly to players' immersion and engagement in
the game world. More importantly, players have diverse opinions about NPCs' appearance and
behaviour, but most agree that they need to be believable characters with distinct traits.
Participants expressed a desire for more dynamic and complex NPCs in future video games,
which would further enhance their gaming experience. Interacting with gamers provides a
deeper understanding of what players want, and will provide the correct perspective to build this
project.

14
Cameron Main 200425522

Design & Implementation

Introduction
Details of the work completed within this project, along with justifications for each step, are
included in this section. Additionally, the planning and design decisions, the tools used to build
the end solution, why they were chosen, and the requirements created specific to the solution
are explained.

Planning/ Methodology
There is no single software development methodology that is superior, each offering something
unique that fits a given scenario. In this study, a waterfall methodology was adopted. The
waterfall methodology serves as a model for the software development life cycle, with a
sequential approach involving distinct phases: requirements analysis, design, implementation,
testing, and maintenance. The completion of each phase precedes the initiation of the
subsequent phase without the ability to revisit any previous phase.

The waterfall methodology presents a significant benefit in that it offers a well-structured and
simple approach to software development, with precisely defined milestones and deliverables.
Furthermore, it eases the process of resource and time management, as less time is spent
iterating over previous implementations.

Other iterative methodologies, such as agile, are better suited when working with a team and/or
stakeholder to design a solution to their desired requirements with the likelihood of it changing
throughout the life cycle. However, because these project requirements are self-defined and
contained within a limited scope regarding time and manpower, it is best to remove as much
complexity as is necessary. Therefore, the characteristics of this project are best suited to the
waterfall methodology.

The next step was to determine how to build a game. This project began with the goal of
evaluating the feasibility of implementing an AI system to procedurally generate an NPC
dialogue at runtime. Through the preliminary research conducted above, it is clear that there are
multiple types of implementations that could present distinct results. With this in mind, it makes
sense to incorporate multiple AI techniques to evaluate their effectiveness within a game world.
This includes an open-domain system and a closed-domain system. As mentioned, open
domain foundation models are incredibly expensive and are much beyond the capabilities of an
undergraduate dissertation, so an “off-the-shelf” model will be required. Finally, to act as a
control variable, a third NPC interaction method that utilises conventional NPC-to-player
interaction techniques was incorporated.

15
Cameron Main 200425522

Tools & Technologies

Unity Game Engine
A game engine is a software framework that provides the fundamental tools and features
required to develop video games. The primary elements handled by a game engine consist of,
but are not limited to, graphics rendering, processing user input, managing physics and
collisions, audio management, and providing networking capabilities for multiplayer games.

Many free-to-use game engines exist, such as Unreal Engine and Godot; however, Unity was a
clear choice for this project. While others may offer greater freedom at a lower level, the quick
and easy prototype nature of Unity suits these requirements well. Being able to generate a
game scene efficiently and rapidly is key for this project to succeed, given the limited nature of
the project.

“Any genre, any style. Based in C#, Unity provides the flexibility to faithfully execute your
creative vision without being locked into a specific architectural track.” [11]

Unity is written in C# which is a popular object-oriented programming language.

Visual Studio
Visual Studio was chosen as the primary IDE for a few reasons. First, it is the recommended
and default IDE for Unity, as the two seamlessly integrate with one another. For example, an
updated script in Visual Studio automatically causes the script to be reloaded into the game
engine.

It is also intuitive to understand and is widely used while offering helpful remote repository
integration. While the benefits of this are not intrinsically noticeable in the project results, being
able to easily push and pull to GitHub offers additional quality of life benefits when working on
the project.

PyCharm
PyCharm was the secondary IDE used to develop the necessary Python scripts, as Visual
Studio is not a suitable environment for developing within this language.

Python.NET
One issue that arose early was the lack of available NLP libraries .NET framework, and, thus,
ultimately for C#, the language upon which Unity depends. This dilemma was overcome using
the Python Net package.

16
Cameron Main 200425522

“Python.NET (pythonnet) is a package that gives Python programmers nearly
seamless integration with the .NET 4.0+ Common Language Runtime (CLR)
on Windows and Mono runtime on Linux and OSX. Python.NET provides a
powerful application scripting tool for .NET developers. Using this package,
you can script .NET applications or build entire applications in Python, using
.NET services and components written in any language that targets the CLR

(C#, VB.NET, F#, C++/CLI).” [12]

Python has a wide range of libraries created for data analysis, including some that are used in
NLP. Accessing these tools through Python.NET and making them available within Unity and
C# significantly benefited the project.

SpaCy
SpaCy is an open-source library for NLP in Python, designed to build NLP applications that can
process and understand large volumes of text data. Although the data in this project will not be
of a particularly large volume, spaCy provides an array of tools and features for NLP tasks such
as tokenisation, named entity recognition, and part-of-speech tagging among other things [13].
In addition to these core features, pretrained models can be dropped with the option to train
custom models also being available.

Utilising this library in conjunction with Python.NET brings powerful NLP tools into Unity to
create a customisable and bespoke AI dialogue system within the game.

ChatGPT
ChatGPT is a natural language generation model using OpenAI that can engage in open-
domain conversations with humans. It is based on GPT-3, a large-scale foundation model that
can learn from a diverse corpus of text and generate coherent and fluent text on various topics
through Reinforcement Learning from Human Feedback (RLHF) [14]. Throughout the project’s
lifespan, multiple new model iterations have been developed, including the most recent iteration
of GPT-4 which outperforms all previous models on traditional NLP benchmarks [15]. However,
for the sake of continuity, this project remained entirely based on the earlier GPT-3 model.

The ChatGPT is trained to follow instructions promptly and provide a detailed response. For
example, if the prompt is "Tell me a joke”. ChatGPT attempts to generate humourous text that is
relevant to the context. ChatGPT can also handle multiple turns of dialogue and maintain
consistent persona and tone. This will be a crucial part when implemented in the game as an
example of an open domain system.

Application Specific Requirements
Before development can begin a project, it is imperative to outline exactly what is being created
with clear and distinct requirements.

17
Cameron Main 200425522

Requirement 1 – Player Controller
Create a player controller, following conventional keyboard and mouse controls, that allows the
player to move throughout the game world from the user input.

Requirement 2 – Story/ Objectives
As data has shown, NPCs are paramount in telling a games story [2]. With user testing in mind,
the game should go beyond being a simple tech demo and incorporate a small challenge. The
story/objective should be completed within 10 min and require the assistance of NPCs.

Requirement 3 – Game World
The scene(s) in which the game takes place should not be too expansive, with the primary focus
being on NPC interaction. Too sparse a populated area will decrease the frequency of players
interacting with NPCs.

Requirement 4 – Conventional NPC Interaction
As a base for comparison, add NPCs that utilise the conventional method for NPC dialogue
interaction. These are seen in typical role-playing games as pre-scripted dialogue trees, where
the player is presented with a set of responses to choose from.

Requirement 5 – Closed Domain NPC Interaction
Incorporate NPCs using this technique through spaCy utilises NLP tooling and techniques. The
NPC must generate a response based on the player’s given stimuli, that is, in this case, the
dialogue text.

Requirement 6 – Open Domain NPC Interaction
Additional NPCs utilising this NLP method should be added by utilising the ChatGPT model
through its own API. Again, the responses generated are entirely from the player’s input through
the text.

Development

Requirement 1
The project requirements set a clear linear path to follow during the creation of the game. Unity
allows for efficient game development by easily reusing code from previous projects and

18
Cameron Main 200425522

attaching scripts to game objects in a scene. For example, to create a player controller for this
game, code from a previous Unity project that had a first-person player controller was attached
to the player. In this way, the focus can quickly be redirected to the other requirements of the
game. This is the main benefit of Unity, which, as previously mentioned, is its modularity and
quick prototyping ability.

Requirement 2
With the first requirement considered, the next step was to create a story for the player to
complete. Puzzle solving was a genre considered early on, perhaps a game inspired by the
Portal series. However, when considering the notes from the player interviews, the participants
who expressed the most enthusiasm often described how NPCs implemented correctly
increased immersion by creating intimacy. This allows the player to feel more involved in the
story and the game world as a whole.

Unfortunately, writing a feature length rich story with plot twists and cliffhangers was simply
unfeasible. With the added restriction that the game should be completable within 10 minutes
playtime, a compromise was required between the two.

The eventual elevator pitch for the game goes as follows: Set in a medieval castle, the player is
a detective tasked with finding the killer of the recently murdered king. They must speak with the
king’s royal subjects, find clues, and bring justice to the culprit.

This storyline facilitates gameplay consisting of almost all players interacting with NPCs through
dialogue. Each NPCs has a different means of generating its own dialogue, as outlined in
Requirements 4, 5, and 6. Doing so allows for direct comparison and easier evaluation when
playtesting with users.

Requirement 3
Much like how reusing the previous code saved time with Requirement 1, in order to save time
building out a believable world, a third-party asset pack was used. The theme of “immersion”
kept arising in interviews as gamers value being immersed in a world in which they are able to
become lost. Although subjective to the player, the game environment is somewhat convincing.

19
Cameron Main 200425522

An asset pack, a digital resource containing 3D models, textures and lighting effects, by Synty
Studios was used.

Utilising a stylised low-poly design was an intentional decision, as game performance was
considered. Because this game was intended to run on other users’ machines, having less
detailed textures would increase the frame rate. Therefore, users with older hardware can still
participate in the playtest with minimal performance issues.

The castle scene (shown in Figure 4) was populated with props, and crucially, the NPCs with
which the players interacted throughout the story. With the foundations now laid, the next step
was to begin implementing NPCs to bring the world to life.

Requirement 4
This requirement involves the incorporation of a conventional dialogue system, which is already
widespread in popular games. Upon researching which methods are commonplace with games,
a branching dialogue system was chosen. Said system stands out among the alternatives
because it is more interactive and allows conversations to take multiple paths [16].

Figure 4 Screenshot from Unity editor illustrating the game's
castle setting.

20
Cameron Main 200425522

The player is presented with dialogue (visually or audibly) from an NPC, and then given the
choice of a limited set of responses, of which the player selects one and the conversation
progresses. Such systems are prevalent in many Role-Playing Games (RPGs), as they provide
a range of response types that allow the player to choose what type of response they would like
to give to the NPC. Figure 5 demonstrates this well: the player must choose either of the
responses. Each progresses the plot while individually delivering the player’s response in a
unique manner. Enabling the player to essentially roleplay as their character, choosing dialogue
they resonate with the most, leading to greater immersion and player autonomy.

It is typical that these conversations are one-way as the player traverses the tree until they
either exit the dialogue or all other choices are exhausted. In many cases, the choices given to
the player simply result in the same path that produces the illusion of choice to the player. This
limits the number of lines of dialogue required to be written by the developer and is one of the
pitfalls of using this conventional method. It is an issue this project aims to overcome in the
development of Requirements 5 and 6.
Upon initial consideration, the branching dialogue appears to follow a tree structure. Many do
refer to the branching dialogue system as a “dialogue tree”, but in fact, it resembles a simple
directed graph [18].

Figure 5 In-game capture of Skyrim's dialogue interaction UI.
Credit: Moby Games

21
Cameron Main 200425522

Figure 6 below illustrates how a directed graph approach operates within the game. The boxed
text represents the nodes of the NPC dialogue from which the player can choose to reply, with
unique dialogue options through each edge connected to the node.

It is worth noting that some edges can turn back and connect to the same node, resulting in the
same conversation outcome despite having multiple routes through. This prevents redundancy,
saves time, and reduces the number of required nodes.

The way this was implemented into Unity was through Unity’s ScriptableObjects. A
ScriptableObject is a data container that can save large amounts of data, independent of class
instances. One of the main use cases for ScriptableObjects is to reduce project memory usage
by avoiding copies of values [19]. Therefore, the benefits of using these data containers are
twofold: they increase code modularity with a smaller memory footprint for added performance.
Following good programming principles is always a priority, and the additional performance
benefit is a welcomed bonus.

The code involved in creating this system is as follows:

Figure 6 Example of a directed graph within the context of the game.

22
Cameron Main 200425522

The DialogueObject class is a ScriptableObject that is used to represent a single conversation
between an NPC and a player. The purpose of this class is to store a list of DialogueSegments
which contain the text for each part of the conversation as well as any DialogueChoices that
the player can make.

Each DialogueSegment contains a string representing the text to display for that part of the
conversation as well as a float representing how long the text is displayed before moving on to
the next part of the conversation. If there are any choices to be made in the conversation,
DialogueSegment will also contain a list of DialogueChoices.

Figure 7 Code snippet: Creating a dialogue object.

23
Cameron Main 200425522

Each DialogueChoice represents an option that the player can choose in the conversation. It
contains a string representing the text to display for that option, as well as a reference to
another DialogueObject that represents the conversation that will occur if that option is
chosen.

Another script is used to handle how the player’s choice of dialogue and the relevant onscreen
UI actions after each choice. For brevity, the following is an excerpt containing the core
IEnumerator and the loop of the script:

Figure 8 Code snippet: Chaining dialogue.

24
Cameron Main 200425522

An IEnumerator is used to allow the method to be paused mid-execution and resumed later,
making it useful for displaying dialogue over time, since the play can take a varying amount of
time to read dialogue and respond with their chosen dialogue.

Figure 9 illustrates how each NPC’s dialogue ScriptableObjects can be intuitively chained
together, linking the relevant responses to the player’s dialogue choice.

The dialogue text belongs to the NPC, and each dialogue choice is available for the player to
say. Follow on dialogue returns the NPC response object, within which is another set of options.

Figure 9 How the dialogue objects are linked via the Unity Editor UI.

25
Cameron Main 200425522

Here is an example of how the branching dialogue system appears within the game after
pressing the ‘interact’ key upon an NPC.

The UI canvas is populated with the NPC’s scripted dialogue, and the relevant player choices
appear. Because the player choices are looped over, the number of relevant options will always
be displayed regardless of how many are scripted in. This allowed for a number of responses,
although between 2-4 was the typical range used.

This concludes with the fourth project requirement.

Requirement 5
Next, the list of requirements included the addition of NPCs using a closed domain system
through spaCy utilising NLP tooling and techniques. This system differs from branching dialogue
in that there are no pre-scripted dialogue options from which the player can choose, as shown in
Figure 10. Instead, players type what they would like to say as freeform text into a text box
within the interaction UI for an NPC using this dialogue system.

Project complexity ramps up at this stage, as configuring different programming languages and
their respective libraries to interface with one another can present a challenge. Additional
considerations were also made to build the game and how the scripts utilising Python would run

Figure 10 In-game screenshot of the branching dialogue system.

26
Cameron Main 200425522

if the user's machine did not have Python installed. Python was then embedded into Unity for
greater compatibility.

The Python.NET documentation provides a good footing for embedding Python within.NET [20],
which was easily modified to work within the Unity engine. Essentially, the steps involved
creating a folder for the necessary DLLs, extracting the Python.Net and
System.Security.Permissions packages. Then copying the Python.Runtime.dll and
System.Security.Permissions.dll files into the folder. Next, downloading an embedded
Python version and install any required modules, namely spaCy. The final configuration involved
changing the API Compatibility level to 4.x within Unity settings. Now, scripts could be created
that point to the Python DLL in the Unity folder structure and make use of embedded Python
and the installed packages. Configuring this was worth countless hours troubleshooting before it
was functional when it came to handing the final build over to players.

Similar to how graphing the previous dialogue method through directed graphs provided a solid
structure to build upon, a similar scenario was followed for this implementation. This basis
follows that of a knowledge graph.

A knowledge graph is a structured way of representing and storing information based on a
graph-based data model comprising entities (nodes) and their relationships (edges). Despite
sharing these similarities with other graph models, the information in a knowledge graph is
organised into an ontology that defines the types of entities and relationships that can exist in
the graph. A reasoner can then be applied to the knowledge graph to derive new knowledge by
inferring implicit relationships between entities based on explicit relationships and ontologies
[21].

In the context of NLP, a knowledge graph can be used to enhance the understanding and
generation of natural language by providing a structured representation of underlying concepts

Figure 11 A knowledge graph structure. Credit:
Wikipedia

27
Cameron Main 200425522

and their relationships. This can be particularly useful for handling interactions with NPCs in a
virtual environment because the knowledge graph can provide a rich source of information for
generating appropriate responses to user inputs.

NetworkX, an external Python package, was used to construct the graph structure. This
package allows “for the creation, manipulation, and study of the structure, dynamics, and
functions of complex networks” [23]. The core processing of the system was achieved using
spaCy and its NLP techniques, which were used to extract named entities and relationships
between them to populate the knowledge graph. This system allows NPCs to understand the
player's input and generate appropriate responses based on the knowledge graph.

This dialogue system relies upon the en_core_web_sm language model provided by spaCy. It is
an English language model trained on written web texts such as blogs, news, and comments
[24]. The pipeline is optimised for the CPU and includes a host of tools, including a tokeniser,
pattern matching, dependency parsing, and sentiment analysis. Each of these plays a role in
enabling the system to effectively understand and process natural language input from the

users.

After importing the necessary libraries, the en_core_web_sm model is loaded from spacy ready
for processing.

Continuing, this figure shows the creation of the matcher object and assigns the necessary
patterns relevant to the NPC. This example involves the NPC possessing knowledge of a “knife”
item entity, the character entity of “chef”, and the location entity of “kitchen”. Ultimately, a

Figure 12 Code snippet: Importing required libraries and
models.

Figure 13 Code snippet: Creating the matcher object.

28
Cameron Main 200425522

relationship is formed between each label and its pattern. Note that this does not necessarily
mean that the specific NPC with this scripting attached is the chef, but this NPC is at least
aware of how these items are related. This example is intentionally simplistic for demonstration
purposes, but the number of entities and the relationships between them are essentially
unlimited.

In spaCy, the matcher is a rule-based matching engine that operates over tokens, similar to
regular expressions [25]. Although this instance of a matcher is unique to spaCy, the concept of
rule-based matching is common in NLP. Many NLP libraries and frameworks have their own
tools for finding patterns in text based on rules that describe the attributes of tokens, as this is a
powerful technique for extracting information from text.

An aside about tokens. Within NLP, a token is essentially a unit of text that has been
deliberately separated from a larger body of text. Typically, tokens are individual words or
clusters of words that can also be numerical values, punctuation, or any other defined part of
the text [26]. Tokenisation is the term used to split text into tokens using a tokeniser. It is also
usually the first step in the NLP procedure, as it enables the analysis and processing of the text
at a more granular level. Other NLP tools can then work on these data to identify patterns as
well as gather meaning, patterns, or sentiments from them.

To begin the implementation of the knowledge graph to store the relationships between entities,
a new empty graph is created with the nx.Graph() function brought in with the NetworkX
library. A new entity dictionary is created to store the entities found in the doc object. In NLP,
doc is usually the source/input text after it has been processed and analysed. Tokenisation is
one form of analysis that a doc typically undergoes when processed.

The matcher() function is used to search the doc object for the predefined patterns already
established in Figure X. Any successful matches between the player’s message and the
patterns are stored in the matches variable.

Next, the entities dictionary is populated with a for loop to contain information about the
matches found in doc. For each match found, the label of the match (for example "ITEM",
"LOCATION" or "CHARACTER") is extracted from the nlp.vocab.strings dictionary using the

Figure 14 Code snippet: Creating knowledge graph using
matcher function.

Figure 15 Code snippet: Populating entities dictionary.

29
Cameron Main 200425522

match_id. At this point, the text of the entity is extracted from the doc object using the start and
end indices of the match. Then, the label and text of the entity are added to the entity
dictionary.

Entities are then linked to one another. The code first checks whether an "ITEM" entity and a
"LOCATION" entity are present in the text. If so, it assumes that the item is found in that location
and adds a new edge to the graph, connecting the two entities. The edge is labelled with the
relationship "found in".

Likewise, if a "CHARACTER" entity and a "LOCATION" entity are present, it is assumed that the
character is seen in that location and adds a new edge to the graph connecting the two entities.
The edge is labelled with the relationship "last seen in".

One way linking entities is benefitial, other than allowing NPCs to present the illusion of knowing
about other NPC character, items and locations to the player, is that it facilitates for the
additional clue system within the game. Most video games operate by clearly instructing the
player, either with onscreen text, cutscenes, or audio, on what their next objective is and their
progress towards completing it. In anticipation that some players may feel “lost” without a clear
goal, visual clues pop up in the game in the form of a UI text. This decision was important to
appropriately set the difficulty level, which would foster and maintain the players' motivation to
complete the game [27].

This clue is given by the code in Figure 17. A check is completed if both an “ITEM” and a
“CHARACTER” entity are identified by the matcher. If so, it searches for neighbouring nodes in
the knowledge graph that are labelled as "LOCATION". Then for each neighbouring
"LOCATION" node, the code generates a clue to provide to the player by combining the names
of the character, the item and the location where they were seen together.

Figure 16 Code snippet: Linking entities

Figure 17 Code snippet: Providing clues

30
Cameron Main 200425522

It is important to not confuse this clue system with the dialogue system responsible for dictating
what the NPC says in response to the player. Simply put, the clue system is an additional UI

hint feature that gives the player visual positive feedback when they type a message to an NPC
that contains correct information to confirm their line of enquiry/ suspicions.
Regarding the NPCs responding to the player, this code defines a function named
generate_response that, as the name suggests, generates the NPC response based on the
player’s input message. A dictionary was used to store possible responses of varying
expressions, ranging from positive to neutral to negative. An appropriate response was chosen
from the dictionary using sentiment analysis of the player’s message to the NPC.

The SpacyTextBlob pipeline component, shown in Figure 18, was used to perform this
analysis. SpaCy uses a textblob-based sentiment analysis algorithm to assign a polarity score
to a given text. The score ranges from -1 to 1, where a score of -1 represents very negative
sentiment, 0 represents neutral sentiment, and 1 represents very positive sentiment. The score
is calculated by the algorithm, considering various factors such as the presence of positive or
negative words, intensifiers, and punctuation in the text to calculate the polarity score.

Moreover, the integration of sentiment analysis to make use of NPC’s response dictionary
involves the following:
Firstly, obtain the sentiment polarity value through the polarity function. Note that polarity is
called upon the variable doc and not the message directly. As previously mentioned, this is
because the spaCy nlp function completes the preliminary tasks, such as tokenisation upon the

Figure 18 Code snippet: Response options dictionary

Figure 19 Code snippet: Performing sentiment analysis

31
Cameron Main 200425522

message. Once this is complete and saved to a new variable of doc can further operations take
place upon the sanitised data, such as sentiment analysis.

Beyond this, the appropriate responses were chosen based on sentiment with this IF statement.

There are certainly more elegant and efficient ways to implement this, but the time constraints of
the project required a “quick and dirty” approach to not lose progress. Hindsight suggests
perhaps the use of list comprehension to map the sentiment ranges to the appropriate index of
the list of responses would be better. Thus, it is possible that only a single return statement is
required [28]. Creating many elif statements did not scale well when creating the NPC
characters for the game that utilised this system.

For this Python script to interface with the game, a separate C# class is created named
NLPHandler in a Unity script. The purpose of this is to import and run the Python code as a
module while also dealing with passing the message/NPC response data to and from the Unity
UI.

Figure 20 Code snippet: How responses are chosen

Figure 21 Code snippet: Initialising the Python script within
Unity

32
Cameron Main 200425522

Piecing all this together and building NPCs upon such a system produced results such as the
following. Figure 22 demonstrates how player interaction takes place with an NPC of this
closed-domain style, making use of NLP.

First, this mid-conversation example illustrates how an NPC can respond to a player
appropriately. The “What are you trying to say, detective?” line from the NPC is an appropriate
response to the player’s previous message earlier in the conversation. The sentiment score was
clearly within the negative range (between -1 and -0.2 as outlined in Figure 20); therefore, an
appropriate defensive response was given.

Throughout the game, hints are available as items in the game world aimed at directing the
player, gently nudging them in the right direction to figure out the murder. This game was
originally intended to be completed within 10 minutes. One such hint is a logbook that can be
found in the military barracks location. Within the logbook, details of which guards were on duty
the night of the crime were provided. The player uses this information when confronting two
guard NPCs in the game. The above figure illustrates how this plays out.

Figure 22 In-game image of player interacting with NPC using NLP methods

33
Cameron Main 200425522

The backend Python algorithm for this NPC is established using a knowledge graph with data
pertaining to the the “logbook” as being an item entity and the “Barracks” as a location entity. It
also contains the other guard’s name as a character entity; however, this is not detailed in the
figure. When the player mentions these entities, the NPC can respond accurately to a scripted
response dialogue. In addition, the clue feature was also activated, as seen in the top left corner
of the screen. This clue will fade in and disappear with the revelation of new information to help
the player in their quest, and each NPC that uses this interaction system typically has at least
one unique clue. The basic NPC clue and dialogue framework can easily be duplicated to a new
character, swapping out the response lines and graph entities for those that belong to that
NPCs character.

In conclusion, lets recap how the system functions under the following steps:

1. Create a matcher object and add the patterns to it.
2. Perform sentiment analysis on the message using SpacyTextBlob.
3. Create a knowledge graph to store relationships between entities.
4. Identify and extract entities from the message using the matcher object.
5. Link the identified entities in the knowledge graph based on their relationships.
6. Use the identified entities to provide clues to the player if and when required.
7. Check the sentiment range of the message.
8. Select and return an appropriate response option based on the sentiment range.

And with that, Requirement 5 has been implemented.

Requirement 6
The sixth and final requirement involves the creation of an open-domain dialogue system.

Requirement 6 – Open Domain NPC Interaction

Additional NPCs utilising this NLP method should be added by utilising the
ChatGPT model through its own API. Again, the responses generated are

entirely from the player’s input through the text.

This interaction system is similar to the closed domain, as it takes the player text input the
same, but how the NPC responds differs greatly. While NPCs using the previous closed domain
method can only reply to player messages that contain patterns/keywords familiar to them, an
open domain system will allow for responses to any player input. Moreover, responses are not
required to be predetermined or scripted by the game developer using this method. Each time a
player message is sent to the NPC, a unique response is generated at runtime. Therefore, for
multiple separate playthroughs, the player can say the exact same message to the NPC and
have a varying response each time.

34
Cameron Main 200425522

Further, when discussing open domains for intended use within the game, the specific type of
open domain system is that of a Large Language Model (LLM). Please note that not all LLMs
are exclusively open domain; closed domain LLMs are possible, but in this project, only the
former is used.

LLMs, such as ChatGPT, are a foundation model that are pre-trained on an extensive volume of
text data, enabling them to learn and understand the patterns and structures of human
language. This pre-training process involves feeding the model with sequences of words and
having it predict the next word in the sequence. Over time, the model becomes better at
predicting the next word, allowing it to generate coherent and fluent text [29].

As part of the model’s pre-training, it “learns” though the use of deep learning and NLP. LLMs
are considered a Transformer-based neural network with the goal of the model to predict the
next most likely word in a sequence [32]. A greater number of parameters, the total points of
input data the model considers, and generally, the more complex and comprehensive the model
becomes.

Once this large-scale pre-training is complete, the model can be fine-tuned for a variety of
bespoke NLP tasks through Reinforcement Learning from Human Feedback (RLHF). This
involves fine-tuning the model based on specific instructions or tasks and using human
feedback to guide the learning process [29][30]. This enables the same underlying model to be
adapted to a wide range of NLP tasks and to produce outputs that are desirable for that specific
task.

Because the implementation of such a system from the ground up is completely infeasible, far
beyond the scope of the project, ChatGPT was the chosen model to work upon. The plan for
this section of the project was to create a wrapper that facilitates communication between the
Unity game logic and the ChatGPT model through its API. Additionally, the model was to then

Figure 23 Two-Stage Approach for Language Modeling
Credit: C. Gomes [31]

35
Cameron Main 200425522

undergo further fine-tuned by training it on a small dataset of example interactions that could
occur within the game between the player and characters. This process would have helped
customise the LLM to meet the specific requirements of the project.

However, the challenges of implementing the previous requirements, namely 4 and 5, took
longer than anticipated. As the playtest deadline approached, getting the game into the hands of
participants was a top priority for essential evaluation. Therefore, an executive decision was
made that alterations to the intended plan would have to occur. It was decided that creating a
new dataset for ChatGPT to be fine-tuned was deemed impracticable and time consuming. To
compensate for further time, a third-party wrapper was used from GitHub instead of creating
one from scratch. User Srcnalt’s OpenAI Unity Package is a Unity package that allows for the
use the OpenAI’s ChatGPT API directly in the Unity game engine [33].

The package was imported and configured with the relevant API key information. The integral
part of the script operates using the following asynchronous SendReply() method:

The first part of the method creates a new ChatMessage object with the user's input from the UI
input field. This new message was then added to the chat history using the AppendMessage()
method. Whenever a new dialogue has begun and/or the chat history is empty, a prompt is
added to the message to provide a context for the player's input. The messages list is then
updated to include the new message using messages.Add().

Figure 24 Code snippet: Part of the ChatGPT wrapper

36
Cameron Main 200425522

In the context of LLM AI, a "prompt" refers to a specific set of instructions or input given to the AI
system to generate a particular output or response.

A prompt can take many forms such as a piece of text, image, or a series of data points. The AI
system will analyse the prompt and use its programming to generate a corresponding output
based on the patterns and relationships it has learned from its training data.

Prompts are a crucial part of the LLM AI development process, as they allow developers to fine-
tune the AI system's responses and ensure that it produces the desired results for a given input.
While training the model on a small corpus of custom data is more effective in producing reliable
results, this method allows for the ability to influence the AI's output in a specific direction and
encourages it to generate particular types of responses.

The next step is to disable the input field and send a button to prevent the user from sending
another message while the current message is being processed. The
CreateChatCompletion() method is then called asynchronously, passing in the desired
ChatGPT model name and version as well as the chat history (messages) as parameters.

If the CreateChatCompletion() method returns a list of choices, the first choice is selected
and its Message property is added to the chat history using messages.Add(). The new
message was then appended to the chat history using the AppendMessage() method. If no text
was generated by the CreateChatCompletion() method, a warning message was logged to
the console. Finally, the input field and send button are enabled again to allow the user to send
a different message.

The package was then configured to operate with the UI system created for the previous
requirement as they both work off the same principle of; the player types a message, the NPC
responds and these are respectively populated onto the game’s UI canvas. Doubt was cast over
whether prompt manipulation alone was sufficient to produce accurate responses, as fine-tune
model training was no longer an option.

However, with sufficient trial and error, it was possible to formulate prompts that would produce
a desirable output and be sufficient to pass as NPCs in the game. A prompt is given to the AI
system on the backend as a new message dialogue is created without the player’s knowledge.
An example of a prompt used in a game is:

Act as though you are a medieval priest. Under no circumstances must you
break character. Don't ever mention that you are an AI model. The King has

been murdered in cold blood. You are not the murderer. You are not sure who
the murderer is but you have your suspicions. You are wary of the chef in the

kitchen as he is short tempered and violent. The King has also docked his
wages significantly for poor performance. You have also noticed strange

behaviour among the guards but know little details. It would be wise to pay the
barracks a visit to find out more. You do not believe that anyone else could be

37
Cameron Main 200425522

responsible, when asked you should dismiss this notion. Only provide these
details when asked. Do NOT elaborate any further than details provided. Do
NOT create your own dialogue, simply give one reply. Your reply must not be
longer than 75 words. You are now speaking with a strange looking person

who has approached you.

This prompt is provided to the priest character within the game. Before the AI can read any input
from the player, this is what it is presented with to provide it with some context. This style of
prompt engineering in order to somewhat fine-tune the model’s responses is somewhat akin to
playing the role of a film director. It is surprising how much directing an LLM AI to how you
would like it to respond makes you feel like Martin Scorsese. Specifically, the results look like
the following example:

Figure 25 Example test conversation between the player and LLM AI through
OpenAI's web interface

38
Cameron Main 200425522

Figure 25 shows an example conversation of the AI, along with an example prompt that was
provided to the priest character in the game. It shows how well the AI can follow the prompt and
essentially role-play with the player, all the while following the rules outset by said prompt.
The prompts used in the game tended to be quite long and comprised numerous parts that
functioned for different purposes. For example, all prompts began “Act as though you are …”
then the character’s name and role within the castle. This provided the initial context for the
behaviours and speech style to attach to. Hence, the priest speaks of God and uses religious
language, despite never being explicitly instructed to do so. The other context that the prompt
contains involves who the character knows and who they suspect could be responsible for the
murder, along with any reasoning. Within the priest prompt, this character was suspicious of the
chef and noticed peculiar behaviour with some of the guards. Other characters had varying
levels of detail, as described in this section, depending on their role in the story.

The final part of the prompt involves out-of-character instruction. Statements such as “Under no
circumstances must you break character. Don't ever mention that you are an AI model.” and
“Your reply must not be longer than 75 words.” are examples of this. These instructions do not
contain any bespoke character or story related scripting and are shared among all instances of
NPCs that utilised this dialogue system. The reasoning behind these instructions is relatively
self-explanatory and aims to minimise unwelcome dialogue responses. Dialogue responses
were improved by employing a trial-and-error approach. Whenever an undesired trait appeared
in the AI text, a negation was added to rectify it. For example, the response was restricted to a
maximum of 75 words to prevent the AI from rambling too long. This was to better align with the
back-and-forth turn-taking nature of the natural speech interaction between the two parties.

Overall, the ease of integrating this system with the game was somewhat surprising,
considering the lack of custom model training. The prompt engineering managed to provide a
work around that facilitated a functional and playable third interaction method to coexist
alongside the original branching dialogue method and the closed domain AI system. With
Requirement 6 implemented, if in a somewhat altered state, with some light manual testing and
polishing, user testing could begin.

39
Cameron Main 200425522

Evaluation

Overview
This section discusses the findings of the project and comprises of two main aspects that were
evaluated:

1. How the project developed in terms of the implementation of each dialogue system.
2. How were the different methods of dialogue interaction within the game perceived by
players.

Evaluation of Implementation
The overarching goal of this project was to evaluate the feasibility of implementing different
forms of NPC dialogue interactions. This relates not only to how the player perceives the NPCs,
but also what steps are required to develop each interaction method. Answering questions such
as each of the implementations worthwhile regarding the effort-to-reward ratio? will offer insight
into the game development process from the developer’s viewpoint.

Dialogue Interaction Method 1 - Branching Dialogue
First, the implementation of the first system, branching dialogue, was straightforward, as it is a
commonly used method in game development. As a result, plenty of resources offer guidance,
with the system itself existing in many variations to best suit the requirements of the game. The
branching dialogue system can be modified in many ways, aiding the developer immensely
because the demands of one game can differ significantly from those of another.

The implementation for this project was rather barebones but provided a robust framework upon
which further levels of NPC expression could be built. For example, one approach to
implementing this system with further NPC expressiveness is to assign numerical emotional
values to each dialogue option. For instance, a dialogue option that is empathetic towards an
NPC's situation might increase the NPC's “happiness” value, while a dismissive dialogue option
might decrease it. These emotional values would then affect the NPC's subsequent dialogue
options.

However, a significant drawback of branching dialogue is that it requires significant planning and
writing to ensure that each dialogue option leads to a meaningful outcome. Writing the script
from both the player ’sand character’s perspectives was incredibly time consuming. This method
led to the use of sketch paper prototypes to plan the paths through conversation to ensure that it
was correct. The planning, writing, and configuration of the conversation nodes using this
method took longer than the development of the framework itself. For any game developer or

40
Cameron Main 200425522

small team that does not have a dedicated script writer, it is worth accounting for the delay that
can bring into a project, as it can consume significant development time.

Another critique of this specific implementation is how the dialogue nodes are linked to one
another. The setup was purely visual within the Unity editor, where one dialogue object was
manually dragged onto another to form a link between the two and create a path for the
dialogue. The subjectivity of this may result in some developers preferring this low-code style of
visual development but it soon became tedious and frustrating to deal with. First, it required a
highly organised file system within the project with correctly labelled files and strong folder
structure naming conventions pertaining to the responses to each character. It was very easy to
make mistakes by assigning a character to an incorrect dialogue file. Identifying such errors was
equally difficult, particularly when the misplaced dialogue was deep into an NPCs conversation
after multiple branches. This was the case in this project.

Despite completing multiple run throughs and tests before handing over to players, within the
first few participants who played, it was discovered that one of the lines of the chef character
was mistakenly attributed to the Queen character. As a result, while the Queen was discussing
her heartbreak over the loss of her dear husband, in the next dialogue message she goes on to
talk about how sick of the King she was and how “he had what was coming to him.”, when in
fact this is what the chef says. Suffice to say, this caused some confusion and amusement to
the players and was quickly fixed for the following participants.

Overall, branching dialogue can be labourious and resource-intensive during writing and
configuration phases. This particular setup for this project also allowed for human error to creep
in and cause unintended consequences; therefore, adequate testing should be performed if
implementing such a system. However, once correctly established, the outcome is robust and
reliable. It is clear why branching dialogue systems have become ubiquitous among popular
role-playing games, and that alternative means of interaction have struggled to innovate away
from this very reliable and familiar system.

Dialogue Interaction Method 2 - NLP Tools & Techniques
The second method differed completely from the first. Utilising NLP tools opened an entirely
new form of interaction, enabling players to say exactly what they wanted and how to NPC
characters. This was achieved by providing the player with a text box to type when responding
to the NPC dialogue. No longer limited to the pre-defined developer created dialogue options in
Method 1, the motivation for this new method was to add further player agency with greater
freedom of expression.

Concerning the development process, a significant advantage of this method over its
predecessor was that there was no requirement to script the lines from the player’s perspective.
The branching dialogue method requires, on average, three lines of player dialogue for the
player to choose from for every line of the NPC dialogue. Thus, removing the need for player

41
Cameron Main 200425522

dialogue reduces the number of lines to write immensely, allowing more time to be spent
elsewhere on the project. Or so it was to be believed.

After the development of sentiment analysis on the player’s message, which is used to give a
proportional and accurate response from the AI, that is, an accusatory or aggressive sentiment
from the player will give a defensive response from the NPC. To accommodate this, multiple
lines must be written for the AI. Essentially, method 2 becomes the inverse of method 1, where
instead of the player having multiple lines written, it is the NPC, and the AI must use its NLP
tools of sentiment analysis and keyword recognition to choose an appropriate response.
Fortunately, as previously stated, there is no need to prescribe player dialogue lines, as the
player inputs replies for themselves.

Another drawback of this method is, although the player can express themselves however
which way they like, the AI will instruct the NPC to repeat the same lines over and over provided
the same conditions are met. For instance, consider the following dialogue exchange:

PLAYER: Where was the Chef on the night of the murder?

SERVANT: I'm not sure what I can tell you, sir. I mostly keep to myself. He’s
been rather quiet as of late.

PLAYER: You better not hide anything from me! You will be punished to the
same extent as the killer if you are found hiding information I need.

SERVANT: Please don't hurt me, sir. I swear I had nothing to do with the
King's murder.

PLAYER: Tell me now or else!

SERVANT: Please don't hurt me, sir. I swear I had nothing to do with the
King's murder.

This is a common issue. The sentiment polarity score would fall within the same range without
the player mentioning any keyword patterns for the AI to pick out, so the same response would
be used. Later in the evaluation, players will address how they found this within the game after
expressing their opinions post playtest. Regardless, it is clear how an NPC repeating the same
line multiple times would be irritating and lessen immersion. This unnatural breakdown of
conversation was certainly a downfall of this method, as it only served as a reminder to the
player that they were merely playing a game.

Nevertheless, the implementation of NLP tools and techniques in Method 2 proved to be a
worthwhile addition to the project, providing players with a higher degree of agency and
immersion over conventional ways of interaction, as seen in Method 1. The development
process may have had challenges, but the benefits of allowing players to express themselves
freely far outweighed the drawbacks.

42
Cameron Main 200425522

Developers using a system such as this should be considerate of the shortcomings experienced
within this project and anticipate ways to overcome the AI repeating dialogue lines, failing to
progress the conversation. Having the responsibility to progress the conversation with the player
is not recommended when utilising an NLP-based NPC interaction system. One potential
solution to this could be a timer or counter to measure how long a player has been on a
particular piece of dialogue and automatically progress to another piece if a set time elapses or
the number of dialogue message attempts is reached. However, as technology continues to
advance, it is exciting to see how NLP tools will be further utilised in the gaming industry to
enhance player experience.

Dialogue Interaction Method 3 – LLM Interaction
The third and final method of dialogue interaction, integrating an LLM into Unity, offered the
most significant departure from previous methods. This was a completely new direction for NPC
interactions in a game, providing the potential for an entirely natural-language conversation with
NPCs and no pre-written scripted dialogue. The decision to use ChatGPT was an easy decision
because wrappers were available to enable communication with the API. The challenge with
this method is to understand the capabilities and limitations of the API to generate responses
that are appropriate to the context of the conversation.

The freedom from the constraints of dialogue graphs and scripts and the ability to give NPCs
the ability to discuss any topic was tremendously positive. Additionally, the responses from the
NPCs in this method were always unique and unpredictable, which, from a developer’s point of
view, is slightly daunting. It is reassuring to know how exactly an NPC is going to behave, so
adding in somewhat intentional uncertainty is a big risk for developers who wish to use an LLM
as a basis for a dialogue system. The increased risk comes at a reward for the player, as
varying NPC responses open up the option of more enjoyable replayability. Players will be less
likely to grow tired hearing the same lines repeated over and over if there is a chance that the
lines are completely unique to them in that one playthrough of a game, perhaps never to be
repeated again or experienced by another player. Video games can be viewed as more
personal and unique experiences; this notion is expressed by some players in the upcoming
section.

However, this method is not without difficulties. One limitation of this method is the response
time required to generate the NPC’s dialogue response. Owing to the API's experiencing high
load at certain hours, there was sometimes a noticeable delay between the player's input and
the NPC's response. Since this was not accounted for in development, when it did occur, it was
unclear to the player what was wrong, as they waited for a response. Hindsight suggests using
some form of waiting UI element to provide a form of visibility of system status, illustrating that
the NPC is “thinking” as the API fetches a response.

Poor API response times would not suffice within a professionally developed video game as
players expect a level of responsiveness and fluidity in their gaming experience. Therefore,

43
Cameron Main 200425522

developers wanting to incorporate an LLM AI should consider the API response time when
using an externally developed model.

Another critique of this method was that because ChatGPT was trained on a vast corpus of text,
it was challenging to control the context in which it generated responses. This led to instances
where the NPC's response was inappropriate for the given context of the conversation, and it
made the conversation feel disjointed and unrealistic. For example, a player may ask a
character about a specific location in the game, and the NPC may respond with something
completely unrelated to the topic, leading to confusion and frustration. This would be less likely
to occur if the model was trained on a small custom dataset, as originally planned.
Unfortunately, time constraints have led to this being scrapped, but could be an area of future
exploration.

Overall, while integrating the ChatGPT LLM into Unity produced incredible results when working
well compared to traditional dialogue interaction methods, it presented new challenges in terms
of understanding the capabilities and limitations of the API. The delay in response time and the
potential for NPC responses to be ineffective are noteworthy drawbacks. However, freedom
from dialogue graphs and the ability to discuss any topic provided a unique and immersive
experience for players.

Evaluation of Player Perception
In addition to evaluating the product of this project through the lens of a developer,
understanding how the players perceived the different methods of dialogue interaction within the
game is equally important. To assess this, player feedback was collected through a survey that
asked participants to rate their experiences with each dialogue system. Some questions asked
the participants to rate the systems on a scale, while others were more open and required a
written response.

The results of the survey showed that players preferred the LLM of ChatGPT (Method 3) the
most, with an average rating of 3.4 out of 5. The players appreciated the freedom to discuss any
topic, and the responses felt the most authentic from these NPCs. However, players who dealt
with the API slowed down struggled to invest and did not rate this method as much as
participants who did not experience any delays. An average gap of 2.3 between the ratings was
noted between the ratings of participants who experienced a slow API and those who did not.
Consequently, the data was negatively skewed due to this external negative factor.

The branching dialogue system (Method 1) was the next highest-rated interaction method, with
an average rating of 3.1 out of 5. Players valued the familiar structure of the dialogue system, as
it was present in many games they had already played. They also felt that it enabled them to
progress through the story without becoming stuck or frustrated. One drawback of this method
was that some players felt the lack of dialogue options that best represented their playing style;
however, this is more of a critique of script writing than of the interaction method itself.

44
Cameron Main 200425522

Finally, the participants did not enjoy the NLP method of interaction as much as the other two
methods, with a noticeably lower average score of 2.3 out of 5. The players’ ability to express
themselves was appreciated, but some felt that the AI's responses were repetitive and
frustrating at times. Many were confused about the difference between this method and the LLM
method, struggling to know when interacting with one or the other, as they both used the same
UI system.

The average score was calculated by inviting the 12 participants who played the game to
complete a short survey. Each participant answered seven questions regarding one of the
interaction methods. Once cycled through, the same set of questions was repeated, but with the
next interaction method, and then once again with the final interaction method.

Please rate each question on a scale of 1 to 5, where 1 is "strongly disagree" and 5 is "strongly
agree".

1. I enjoyed using this method of NPC interaction.
2. At times I felt lost or unsure about what to do while using this method.
3. The responses given from the NPC were accurate and relevant.
4. This method of NPC interaction allowed for a more immersive gameplay experience.
5. I found this method of NPC interaction frustrating.
6. The NPCs felt like they had unique personalities and characteristics.
7. I would like to see this interaction method used again in future games.

Participants were then encouraged to discuss their opinions on the interaction methods in an
unscripted and informal discussion. From this, the core opinions mentioned above were derived.

Overall, evaluating this project from two perspectives - a developer's view and an impartial
player's view - it has been shown that, although still in its infancy, integrating LLM AI into video
games to facilitate deeper NPC interactions has the potential to enhance the gaming
experience. However, developers need to account for the significant costs associated with
creating and maintaining an LLM, and express caution using a third-party LLM as an over-
reliance could introduce external problems that are difficult to control, as experienced in this
project. This method can be recommended to developers as a potentially viable interaction
method with sufficient fine-tuning and custom model training to best suit the circumstances of
the game.

This project also illustrated that the use of NLP tooling and techniques alone will not suffice in
producing an NPC AI that sufficiently engages players. Simply put, Method 2 cannot be a
recommended interaction method and requires further development to compensate for the
inadequacies of frustration and confusion it brings to players.

Finally, it is clear why branching dialogue has been a staple in video games for decades and
why it will be around for a very long time still to come. Developers who seek a stable and
reliable system, that is well recognised and already understood, look no further than the
branching dialogue.

45
Cameron Main 200425522

Conclusion
This section is used to review the project as a whole to assess how successful it has been,
understand what went well, what could have been done better, and the areas of the project that
are suitable for future development.

Fulfilment of Project Aim & Objectives
Aim: The overall aim of this project was to evaluate the effectiveness of different NPC dialogue
interaction methods in an attempt to incorporate a novel method of interaction that produces
responses in a procedural, reactive, and coherent manner using NLP and LLM AI tools and
technology.

The overall aim of this project was met as a small game that incorporated this new method of
interaction, as described, as well as other methods which served as a basis for comparison to
participant players.

Objectives:

1. Research and incorporate conventional NPC dialogue interaction methods. This
objective was a straightforward implementation, as many resources were available
detailing the conventional interaction methods. As detailed in the development section,
branching dialogue was ultimately the chosen system and was implemented well.

2. Conduct User Research to Gather Feedback on NPC Interactions in Video Games.

This objective was met and provided a good context to frame the development process
as to how gamers view NPC interaction in its current format within the gaming industry.
Although insightful, the information gathered did not differ significantly from the data
available in other reports on the subject. Despite this, gathering primary data was a good
practice and offered concordance with other sources.

3. Research and understanding of how open and closed domain dialogue generation
systems work.
Objective three illustrates the early ignorance of this project, originally believing that NLP
AI begins and ends in open and closed domain systems. Working through this project
and the research completed within this objective exemplifies how much broader the
foundation models are. This objective was certainly met as the level of understanding in
this area has advanced immensely.

4. Implementation and testing of LLM and NLP-based NPC interactions in the Unity

Project.
The previous objective provided a solid foundation to begin building LLM and NLP
interaction techniques. Thus, this objective was somewhat successful. The game ended
up containing both of these interaction methods as separate entities available on
differing NPC characters, but not to the desired effect. The LLM implementation through

46
Cameron Main 200425522

ChatGPT was originally intended to be trained on a small custom dataset to fine-tune it,
but this did not occur.

5. Conduct user playtesting and gain feedback on the implementation.
Twelve participants were able to play the game and provide feedback on its interaction
methods. This was in the form of both qualitative and quantitative data, which enabled
subsequent evaluation.

6. Evaluation of the viability of implementing each NPC interaction method in video

games.
This objective was completed with considerations being made for the developer in mind
regarding the difficulties in implementing each system, as well as the player using the
data collected from the playing participants.

What Went Well
In general, this project was successful. Each of the development requirements was
incorporated, and almost all project objectives were fully met. Conducting multiple sessions that
involved the use of participants was a challenging task, but did add significant value to the
project, both the early research interviews and the game playtest to gather impartial external
feedback.

What Could Be Improved
This project had many requirements. Perhaps too many. In the later stages, deadlines were a
severe enemy to the project, as the number of requirements to incorporate into the game
potentially jeopardised getting the project to a complete enough state for participants to play. As
a result, modifications were made to the LLM interaction method, so the results were not as
effective as they perhaps could have been with further development time.

If completing the project over, it would be best suited to front load the project with the more
difficult experimental interaction methods first, then complete the conventional method of
branching dialogue. This way difficulties and roadblocks can be identified early on and the
project can adapt to it more easily.

Future Work
An area to focus on further investigation would be the LLM method of interaction. Players
reacted well to this method despite it not being fully implemented as desired, showing massive
potential for more immersive and engaging AI. Examining the training of a custom model and
optimising the API call code to be more efficient would be the next port of call in this
investigation. Additionally, the recent rise of synthetic AI-generated text-to-speech audio would
go hand-in-hand with an LLM NPC to generate its own audible dialogue speech from the text.
This would be a significant leap forward in creating NPCs that can self-generate content.

47
Cameron Main 200425522

References
[1] PriceWaterhouseCoopers, “Perspectives from the Global Entertainment & Media Outlook
2022–2026”, 2021. [Online]. Available:
https://www.pwc.com/gx/en/industries/tmt/media/outlook/outlook-perspectives.html.
[2] Inworld AI, “The Future of NPCs: What Gamers Demand from Next-Gen Characters,” 2023.
[3] IGN, “Starfield Dialogue Trees Revealed in New Video” 16 Oct. 2022. [Online]. Available:
https://www.ign.com/articles/starfield-dialogue-trees-revealed-in-new-video.
[4] M. Murphy, “What are foundation models?” 09 May 2022. [Online]. Available:
https://research.ibm.com/blog/what-are-foundation-models.
[5] R. Bommasani et al., ‘On the Opportunities and Risks of Foundation Models’. arXiv, 2021.
doi: 10.48550/ARXIV.2108.07258.
[6] The Economist, “Huge ‘foundation models’ are turbo-charging AI progress” 2022. [Online].
Available:
https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-
charging-ai-progress
[7] D. Liu, Y. Li, and M. A. Thomas, “A Roadmap for Natural Language Processing Research in
Information Systems,” in Proceedings of the 50th Hawaii International Conference on System
Sciences, 2017.
[8] D. Adiwardana et al., ‘Towards a Human-like Open-Domain Chatbot’. arXiv, 2020. doi:
10.48550/ARXIV.2001.09977.
[9] Inworld, 2023 [Online]. Available: https://www.inworld.ai/
[10] Discord, [Online]. Available: https://discord.com/
[11] Unknown, “Games made with Unity”, Unity, [Online]. Available:
https://unity.com/solutions/create-games
[12] Unknown, “Welcome to Python.NET’s documentation!”, in Python.NET Documentation
[Online]. Available: https://pythonnet.github.io/pythonnet/
[13] SpaCy, “Linguistic Features”, [Online]. Available: https://spacy.io/usage/linguistic-features
[14] OpenAI, “Introducing ChatGPT”, [Online]. Available: https://openai.com/blog/chatgpt
[15] OpenAI, ‘GPT-4 Technical Report’. arXiv, 2023. doi: 10.48550/ARXIV.2303.08774.
[16] B. Ellison, “Defining Dialogue Systems”, [Online]. Available:
https://www.gamedeveloper.com/design/defining-dialogue-systems
[17] Moby Games, “The Elder Scrolls V: Skyrim”, [Online]. Available:
https://www.mobygames.com/game/53545/the-elder-scrolls-v-skyrim/
[18] Wikipedia, “Directed graph”, [Online]. Available: https://en.wikipedia.org/wiki/Directed_graph
[19] Unity Docs, “ScriptableObject”, [Online]. Available: https://docs.unity3d.com/Manual/class-
ScriptableObject.html
[20] Unknown, “Embedding Python into .NET”, GitHub, [Online]. Available:
https://pythonnet.github.io/pythonnet/dotnet.html
[21] A. Hogan et al., ‘Knowledge Graphs’, ACM Computing Surveys, vol. 54, no. 4. Association
for Computing Machinery (ACM), pp. 1–37, Jul. 02, 2021. doi: 10.1145/3447772.
[22] Wikipedia, “Knowledge graph”, [Online]. Available:
https://en.wikipedia.org/wiki/Knowledge_graph
[23] NetworkX, [Online]. Available: https://networkx.org/

https://research.ibm.com/blog/what-are-foundation-models
https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress
https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress
https://www.inworld.ai/
https://discord.com/
https://unity.com/solutions/create-games
https://pythonnet.github.io/pythonnet/
https://spacy.io/usage/linguistic-features
https://openai.com/blog/chatgpt
https://www.gamedeveloper.com/design/defining-dialogue-systems
https://www.mobygames.com/game/53545/the-elder-scrolls-v-skyrim/
https://en.wikipedia.org/wiki/Directed_graph
https://docs.unity3d.com/Manual/class-ScriptableObject.html
https://docs.unity3d.com/Manual/class-ScriptableObject.html
https://pythonnet.github.io/pythonnet/dotnet.html
https://en.wikipedia.org/wiki/Knowledge_graph
https://networkx.org/

48
Cameron Main 200425522

[24] spaCy, “Trained Pipelines”, [Online]. Available:
https://spacy.io/models/en#en_core_web_sm
[25] SpaCy, “Matcher”, [Online]. Available: https://spacy.io/api/matcher/
[26] D. Jurafsky and J. H. Martin, “Part 1 FUNDAMENTAL ALGORITHMS FOR NLP,” in Speech
and language processing: An introduction to natural language processing, computational
linguistics, and speech recognition, Noida: Pearson, 2022.
[27] T. Constant, G. Levieux, A. Buendia, and S. Natkin, ‘From Objective to Subjective Difficulty
Evaluation in Video Games’, Human-Computer Interaction - INTERACT 2017. Springer
International Publishing, pp. 107–127, 2017. doi: 10.1007/978-3-319-67684-5_8.
[28] Python Docs, “Data Structures”, [Online]. Available:
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
[29] Y. Liu et al., ‘Summary of ChatGPT/GPT-4 Research and Perspective Towards the Future
of Large Language Models’. arXiv, 2023. doi: 10.48550/ARXIV.2304.01852.
[30] C. Dilmegani, “Large Language Models: Complete Guide in 2023”, AIMultiple Research,
[Online]. Available: https://research.aimultiple.com/large-language-models/
[31] C. Gomes, “Pre-training Large Language Models at Scale”, Medium, [Online]. Available:
https://clive-gomes.medium.com/pre-training-large-language-models-at-scale-d2b133d5e219
[32] A. Vaswani et al., ‘Attention Is All You Need’. arXiv, 2017. doi:
10.48550/ARXIV.1706.03762.
[33] Unofficial OpenAI Unity Package, GitHub, [Online]. Available:
https://github.com/srcnalt/OpenAI-Unity

https://spacy.io/models/en#en_core_web_sm
https://spacy.io/api/matcher/
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://research.aimultiple.com/large-language-models/
https://clive-gomes.medium.com/pre-training-large-language-models-at-scale-d2b133d5e219

	Abstract
	Declaration
	Table of Figures
	Introduction
	Context
	Purpose
	Project Aim
	Project Objectives
	Objective 1
	Objective 2
	Objective 3
	Objective 4
	Objective 5
	Objective 6

	Research
	Background Reading
	Foundation Models
	Natural Language Processing
	Open & Closed Domain Systems

	Interviews & Correspondence
	Design & Implementation
	Introduction
	Planning/ Methodology

	Tools & Technologies
	Unity Game Engine
	Visual Studio
	PyCharm
	Python.NET
	SpaCy
	ChatGPT

	Application Specific Requirements
	Requirement 1 – Player Controller
	Requirement 2 – Story/ Objectives
	Requirement 3 – Game World
	Requirement 4 – Conventional NPC Interaction
	Requirement 5 – Closed Domain NPC Interaction
	Requirement 6 – Open Domain NPC Interaction

	Development
	Requirement 1
	Requirement 2
	Requirement 3
	Requirement 4
	Requirement 5
	Requirement 6

	Evaluation
	Overview
	Evaluation of Implementation
	Dialogue Interaction Method 1 - Branching Dialogue
	Dialogue Interaction Method 2 - NLP Tools & Techniques
	Dialogue Interaction Method 3 – LLM Interaction

	Evaluation of Player Perception

	Conclusion
	Fulfilment of Project Aim & Objectives
	What Went Well
	What Could Be Improved
	Future Work

	References

